Interferon-gamma targets cancer cells and osteoclasts to prevent tumor-associated bone loss and bone metastases.

نویسندگان

  • Zhiqiang Xu
  • Michelle A Hurchla
  • Hongju Deng
  • Ozge Uluçkan
  • Fang Bu
  • Andrew Berdy
  • Mark C Eagleton
  • Emanuela A Heller
  • Desiree H Floyd
  • Wessel P Dirksen
  • Sherry Shu
  • Yuetsu Tanaka
  • Soledad A Fernandez
  • Thomas J Rosol
  • Katherine N Weilbaecher
چکیده

Interferon-gamma (IFN-gamma) has been shown to enhance anti-tumor immunity and inhibit the formation of bone-resorbing osteoclasts. We evaluated the role of IFN-gamma in bone metastases, tumor-associated bone destruction, and hypercalcemia in human T cell lymphotrophic virus type 1-Tax transgenic mice. Compared with Tax(+)IFN-gamma(+/+) mice, Tax(+)IFN-gamma(-/-) mice developed increased osteolytic bone lesions and soft tissue tumors, as well as increased osteoclast formation and activity. In vivo administration of IFN-gamma to tumor-bearing Tax(+)IFN-gamma(-/-) mice prevented new tumor development and resulted in decreased bromodeoxyuridine uptake by established tumors. In vitro, IFN-gamma directly decreased the viability of Tax(+) tumor cells through inhibition of proliferation, suppression of ERK phosphorylation, and induction of apoptosis and caspase 3 cleavage. IFN-gamma also inhibited macrophage colonystimulating factor-mediated proliferation and survival of osteoclast progenitors in vitro. Administration of IFN-gamma to C57BL/6 mice decreased Tax(+) tumor growth and prevented tumor-associated bone loss and hypercalcemia. In contrast, IFN-gamma treatment failed to protect IFN-gammaR1(-/-) mice from Tax(+) tumor-induced skeletal complications, despite decreasing tumor growth. These data demonstrate that IFN-gamma suppressed tumor-induced bone loss and hypercalcemia in Tax(+) mice by inhibiting both Tax(+) tumor cell growth and host-induced osteolysis. These data suggest a protective role for IFN-gamma in patients with bone metastases and hypercalcemia of malignancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microenvironment and Immunology CXCL10 Promotes Osteolytic BoneMetastasis by Enhancing Cancer Outgrowth and Osteoclastogenesis

Amplification of the chemokines CXCL10 andRANKLhas been suggested to promote osteoclast differentiation and osteolytic bone metastasis, but a function for endogenous CXCL10 in these processes is not well established. In this study, we show that endogenous CXCL10 is critical to recruit cancer cells to bone, support osteoclast differentiation and promote for the formation of osteolytic bone metas...

متن کامل

Future treatment of bone metastases.

All bone surfaces are periodically remodeled by the coupled and balanced action of osteoclasts and osteoblasts, of which the activities are regulated by a variety of cytokines and growth factors. Patients with cancer metastatic to the skeleton often develop osteolytic bone lesions, in which the actions of osteoclasts and osteoblasts remain coupled, but become imbalanced in sites adjacent to the...

متن کامل

Tumor AvB3 Integrin Is a Therapeutic Target for Breast Cancer Bone Metastases

In breast cancer bone metastasis, tumor cells stimulate osteoclast-mediated bone resorption, and bone-derived growth factors released from resorbed bone stimulate tumor growth. The AvB3 integrin is an adhesion receptor expressed by breast cancer cells and osteoclasts. It is implicated in tumor cell invasion and osteoclast-mediated bone resorption. Here, we hypothesized that the therapeutic targ...

متن کامل

Therapeutic Discovery Plumbagin Inhibits Osteoclastogenesis and Reduces Human Breast Cancer-Induced Osteolytic Bone Metastasis in Mice through Suppression of RANKL Signaling

Bone loss is one of the major complications of advanced cancers such as breast cancer, prostate cancer, and multiple myeloma; agents that can suppress this bone loss have therapeutic potential. Extensive research within the last decade has revealed that RANKL, amemberof the tumornecrosis factor superfamily, plays amajor role in cancer-associated bone resorption and thus is a therapeutic target....

متن کامل

Bisphosphonates in the Prevention and Treatment of Bone Metastases

Bisphosphonates have an established role in treating tumor-induced hypercalcemia and decreasing the incidence of skeletal-related events. Recent data suggest that these agents may also prevent skeletal metastases. This review explains how cancer metastasizes to bone and how bisphosphonates may block this process, with a summary of clinical trials supporting the use of bisphosphonates to treat a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 7  شماره 

صفحات  -

تاریخ انتشار 2009